Enrollment No: E	xam Seat No:
------------------	--------------

C.U.SHAH UNIVERSITYSummer Examination-2019

Subject Name: Discrete Mathematics

Subject Code: 4TE04DSM1 Branch: B.Tech (CE)

Semester: 4 Date: 15/04/2019 Time: 02:30 To 05:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1	Attempt the following questions:	(14)
a)	Find the least and greatest element in the poset $\langle N, D \rangle$, if they exist.	(02)
b)	Define: Poset, Pseudo Graph	(02)
c)	State Pigeonhole principle.	(02)
d)	Find the atom and anti-atom of $\langle S_{60}, D \rangle$.	(02)
e)	Prove that $(ab+ab')a'b'=0$.	(02)
f)	$(Z_{11}, +_{11})$ is cyclic group True or False?	(01)
g)	How many edges are there in a graph with 7 vertices each of degree 4?	(01)
h)	Define: Difference of Fuzzy set	(02)
Attempt	any four questions from Q-2 to Q-8	
Q-2	Attempt all questions.	(14)
a)	State and prove Stone's representation theorem.	(10)
b)	State Distributive law for fuzzy subsets and prove any one.	(04)
Q-3	Attempt all questions	(14)
a)	Show that $\{0,2,4,6\}$ is a subgroup of $(Z_8,+_8)$, where $+_8$ is addition modulo 8.	(05)
b)	Prove that $\langle S_{42}, D \rangle$ is a complemented lattice and also draw the Hasse diagram of it.	(05)
c)	Prove that $\langle S_6, D \rangle$ is a sub lattice of $\langle S_{30}, D \rangle$.	(04)
Q-4	Attempt all questions	(14)
a)	Show that the set $Q \setminus \{-1\}$ is an abelian group with respect to the binary operation $a*b=a+b+ab$, for all $a, b \in G$.	(07)

- **b)** Let $E = \{a, b, c\}$, $A = \{(a, 0.4), (b, 0.7), (c, 0.6)\}$, $B = \{(a, 0.8), (b, 0.2), (c, 0.5)\}$ then (07) find the following:
 - 1) $\underset{\sim}{A} \cup \underset{\sim}{B}$ 2) $\underset{\sim}{A} \cdot \underset{\sim}{B}$ 3) $\underset{\sim}{A} + \underset{\sim}{B}$ 4) $\underset{\sim}{A} \underset{\sim}{B}$ 5) $\underset{\sim}{A} \cap \underset{\sim}{B}$ 6) $\underset{\sim}{A}'$ 7) $\underset{\sim}{B}'$

Q-5 Attempt all questions

(14)

a) For a lattice $\langle P(\{a,b,c\}),\subseteq \rangle$, answer the following questions:

(07)

- i) Find cover of each element and draw the Hasse diagram.
- ii) Find lower bound, upper bound, greatest lower bound, least upper bound of $A = \{\{a,b\}\}\$.
- iii) Find the least and greatest element of it.
- **b**) Let $\langle L, \leq \rangle$ be a lattice $a, b \in L$ then prove that

 $i)\ a \leq b \Leftrightarrow a*b = a \Leftrightarrow a \oplus b = b \ ii)\ a \leq c \Leftrightarrow a \oplus \left(b*c\right) \leq \left(a \oplus b\right)*c$

Q-6 Attempt all questions

(14)

(07)

- a) i) Draw the graph represented by given adjacency matrix $\begin{bmatrix} 1 & 2 & 2 & 1 \\ 1 & 0 & 1 & 2 \\ 2 & 1 & 1 & 0 \\ 0 & 2 & 1 & 0 \end{bmatrix}$. (05)
 - ii) Write the adjacency matrix from the given digraph.

- b) State and prove Lagrange's theorem.
- c) By using mathematical induction prove that $1+2+3+...+n = \frac{n(n+1)}{2}$. (04)

Q-7 Attempt all questions.

(14)

(05)

- a) Obtain the sum of product canonical form of the Boolean expression in three variables $\alpha(x, y, z) = (x \oplus y)' \oplus z$.
- **b)** Prove that (Z_6^*, \times_6) is a group. Is it commutative? (05)

c) Find all node base of the following diagraph shown in the figure.

Q-8 Attempt all questions.

(14)

(04)

- a) Define tree and draw a directed tree from following and also find the representation of binary tree. $(v_0(v_1(v_2)(v_3(v_4)(v_5)))(v_6(v_7(v_8))(v_9)(v_{10})))$
- **b**) Do as directed: (07)
 - 1) Translate the following in your own words. A(x): x is a whale, B(x): x is a fish, C(x): x lives in water.
 - i) $(\exists x)(B(x) \land \sim A(x))$
- ii) $(\forall x)(A(x)\lor C(x)) \Rightarrow B(x)$
- 2) Solve the recurrence relation $a_n = 5a_{n-1} 6a_{n-2}$, $n \ge 2$; $a_0 = 1$, $a_1 = 2$.